Technical Information

Up-to-Date Applications, technical information, and more

SA Series Ultra-low Noise Amplifiers

In this document, we introduce two technologies, bias stabilization technology and active input impedance to achieve low noise characteristics employed in SA-230F5 and SA-430F5.

Bias-stabilization technology

The bias condition is temperature dependant. To solve this problem, inserting a resistor in the emitter of the input transistor is a solution, but that resistor would generate noise. The bias stabilization technology can stabilize the bias without using the resistor.
Fig. 1 shows the basic amplification circuitry of SA-230F5. By DC servo of a differential integrator, the collector current Ic of the input transistor is IC = VREF / RC.
The transconductance gm of the circuit in Fig. 1 is

Where k is the Boltzmann constant, q is the elementary charge, and T is the absolute temperature.
Gain A is

According to this equation, the gain is inversely proportional to the absolute temperature. If VREF is proportional to absolute temperature, the gain A will not depend on temperature. It is possible to make VREF proportional to temperature by using a dedicated IC or a resistor with a temperature coefficient.
if VREF = α・T, the gain A is

Then, it will not be temperature dependant.

Figure 1. Basic Amplification Circuitry of SA-230F5

Active input impedance

The active input impedance can be matched in a wide frequency range rather than at a point in conjugate matching. In addition, the noise figure which could be up to 3 dB by a termination resistor, can be less than 3 dB.

The input impedance of the circuit whose input and output of the inverting amplifier are connected by resistor Rf as shown in Fig. 2 can be calculated as Zin = Rf / (1 + A).
This value depends on the gain.

Because a stable gain can be achieved by the bias stabilization technology mentioned above, the stable input impedance can be kept.

Figure 2. Active Input Impedance

Utilizing these two technologies, the SA-230F5 achieves ultra low-noise characteristics in a wide range as shown in Fig 3.

Figure 3. Noise Figure of SA-230F5